Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Andes Pediatr ; 95(1): 69-76, 2024 Feb.
Artigo em Espanhol | MEDLINE | ID: mdl-38587346

RESUMO

In adolescence and especially in females, greater body dissatisfaction has been evidenced, which is defined as a negative evaluation of one's own body, being a strong predictor of eating disorders and obesity. OBJECTIVE: To relate body dissatisfaction with self-esteem, depression, and body mass index in adolescents. SUBJECTS AND METHOD: Quantitative, correlational, and cross-sectional study in a sample of 397 school adolescents (180 males and 217 females) from Concepción, Chile, aged 10 to 19 years, to whom the following instruments were applied: Body Shape Questionnaire (BSQ) to assess body dissatisfaction, Rosenberg Self-Esteem Scale, Beck's Depression Inventory-II for those older than 14 years, and Birleson Depression Self-Rating Scale for those younger than 14 years. Body mass index z-score was determined. Spearman's correlation coefficient was estimated for all variables. RESULTS: Body dissatisfaction was reported in 54.9 % of females and 18.3 % of males. Body dissatisfaction was positively correlated with age, z-BMI, and depression (p < 0.01) and negatively correlated with self-esteem (p < 0.01). When body dissatisfaction was differentiated by sex, the same significant correlations remained, except for age. CONCLUSIONS: The results confirm the relationship between body dissatisfaction with self-esteem, depression, and BMI. The importance of promoting healthy self-esteem and body image from an early age to prevent eating disorders and obesity is emphasized.


Assuntos
Insatisfação Corporal , Estado Nutricional , Masculino , Feminino , Adolescente , Humanos , Depressão/diagnóstico , Estudos Transversais , Obesidade
2.
Adv Sci (Weinh) ; : e2309427, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501900

RESUMO

Developing time-sustained drug delivery systems is a main goal in innovative medicines. Inspired by the architecture of secretory granules from the mammalian endocrine system it has generated non-toxic microscale amyloid materials through the coordination between divalent metals and poly-histidine stretches. Like their natural counterparts that keep the functionalities of the assembled protein, those synthetic structures release biologically active proteins during a slow self-disintegration process occurring in vitro and upon in vivo administration. Being these granules formed by a single pure protein species and therefore, chemically homogenous, they act as highly promising time-sustained drug delivery systems. Despite their enormous clinical potential, the nature of the clustering process and the quality of the released protein have been so far neglected issues. By using diverse polypeptide species and their protein-only oligomeric nanoscale versions as convenient models, a conformational rearrangement and a stabilization of the building blocks during their transit through the secretory granules, being the released material structurally distinguishable from the original source is proved here. This fact indicates a dynamic nature of secretory amyloids that act as conformational arrangers rather than as plain, inert protein-recruiting/protein-releasing granular depots.

3.
Pharmaceutics ; 15(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004610

RESUMO

Both nanostructure and multivalency enhance the biological activities of antimicrobial peptides (AMPs), whose mechanism of action is cooperative. In addition, the efficacy of a particular AMP should benefit from a steady concentration at the local place of action and, therefore, from a slow release after a dynamic repository. In the context of emerging multi-resistant bacterial infections and the urgent need for novel and effective antimicrobial drugs, we tested these concepts through the engineering of four AMPs into supramolecular complexes as pharmacological entities. For that purpose, GWH1, T22, Pt5, and PaD, produced as GFP or human nidogen-based His-tagged fusion proteins, were engineered as self-assembling oligomeric nanoparticles ranging from 10 to 70 nm and further packaged into nanoparticle-leaking submicron granules. Since these materials slowly release functional nanoparticles during their time-sustained unpacking, they are suitable for use as drug depots in vivo. In this context, a particular AMP version (GWH1-NIDO-H6) was selected for in vivo validation in a zebrafish model of a complex bacterial infection. The GWH1-NIDO-H6-secreting protein granules are protective in zebrafish against infection by the multi-resistant bacterium Stenotrophomonas maltophilia, proving the potential of innovative formulations based on nanostructured and slowly released recombinant AMPs in the fight against bacterial infections.

4.
Biophys Rev ; 15(4): 639-660, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681097

RESUMO

Under macromolecular crowding (MC) conditions such as cellular, extracellular, food and other environments of biotechnological interest, the thermodynamic activity of the different macromolecules present in the system is several orders of magnitude higher than in dilute solutions. In this state, the diffusion rates are affected by the volume exclusion induced by the crowders. Immiscible liquid phases, which may arise in MC by liquid-liquid phase separation, may induce a dynamic confinement of reactants, products and/or enzymes, tuning reaction rates. In cellular environments and other crowding conditions, membranes and macromolecules provide, on the whole, large surfaces that can perturb the solvent, causing its immobilisation by adsorption in the short range and also affecting the solvent viscosity in the long range. The latter phenomenon can affect the conformation of a protein and/or the degree of association of its protomers and, consequently, its activity. Changes in the water structure can also alter the enzyme-substrate interaction, and, in the case of hydrolytic enzymes, where water is one of the substrates, it also affects the reaction mechanism. Here, we review the evidence for how macromolecular crowding affects the catalysis induced by hydrolytic enzymes, focusing on the structure and dynamics of water.

5.
Int J Biol Macromol ; 250: 126164, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549767

RESUMO

Hexahistidine-tagged proteins can be clustered by divalent cations into self-containing, dynamic protein depots at the microscale, which under physiological conditions leak functional protein. While such protein granules show promise in clinics as time-sustained drug delivery systems, little is known about how the nature of their components, that is, the protein and the particular cation used as cross-linker, impact on the disintegration of the material and on its secretory performance. By using four model proteins and four different cation formulations to control aggregation, we have here determined a moderate influence of the used cation and a potent impact of some protein properties on the release kinetics and on the final fraction of releasable protein. In particular, the electrostatic charge at the amino terminus and the instability and hydropathicity indexes determine the disintegration profile of the depot. These data offer clues for the fabrication of efficient and fully exploitable secretory granules that being biocompatible and chemically homogenous allow their tailored use as drug delivery platforms in biological systems.

6.
Microb Cell Fact ; 22(1): 81, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098491

RESUMO

BACKGROUND: Recombinant proteins cover a wide range of biomedical, biotechnological, and industrial needs. Although there are diverse available protocols for their purification from cell extracts or from culture media, many proteins of interest such as those containing cationic domains are difficult to purify, a fact that results in low yields of the final functional product. Unfortunately, this issue prevents the further development and industrial or clinical application of these otherwise interesting products. RESULTS: Aiming at improving the purification of such difficult proteins, a novel procedure has been developed based on supplementing crude cell extracts with non-denaturing concentrations of the anionic detergent N-Lauroylsarcosine. The incorporation of this simple step in the downstream pipeline results in a substantial improvement of the protein capture by affinity chromatography, an increase of protein purity and an enhancement of the overall process yield, being the detergent not detectable in the final product. CONCLUSION: By taking this approach, which represents a smart repurposing of N-Lauroylsarcosine applied to protein downstream, the biological activity of the protein is not affected. Being technologically simple, the N-Lauroylsarcosine-assisted protein purification might represent a critical improvement in recombinant protein production with wide applicability, thus smothering the incorporation of promising proteins into the protein market.


Assuntos
Detergentes , Proteínas Recombinantes de Fusão/metabolismo , Extratos Celulares , Proteínas Recombinantes/genética , Cromatografia de Afinidade/métodos
7.
Pharmaceutics ; 15(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37111554

RESUMO

Antibiotic resistance has exponentially increased during the last years. It is necessary to develop new antimicrobial drugs to prevent and treat infectious diseases caused by multidrug- or extensively-drug resistant (MDR/XDR)-bacteria. Host Defense Peptides (HDPs) have a versatile role, acting as antimicrobial peptides and regulators of several innate immunity functions. The results shown by previous studies using synthetic HDPs are only the tip of the iceberg, since the synergistic potential of HDPs and their production as recombinant proteins are fields practically unexplored. The present study aims to move a step forward through the development of a new generation of tailored antimicrobials, using a rational design of recombinant multidomain proteins based on HDPs. This strategy is based on a two-phase process, starting with the construction of the first generation molecules using single HDPs and further selecting those HDPs with higher bactericidal efficiencies to be combined in the second generation of broad-spectrum antimicrobials. As a proof of concept, we have designed three new antimicrobials, named D5L37ßD3, D5L37D5L37 and D5LAL37ßD3. After an in-depth exploration, we found D5L37D5L37 to be the most promising one, since it was equally effective against four relevant pathogens in healthcare-associated infections, such as methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis (MRSE) and MDR Pseudomonas aeruginosa, being MRSA, MRSE and P. aeruginosa MDR strains. The low MIC values and versatile activity against planktonic and biofilm forms reinforce the use of this platform to isolate and produce unlimited HDP combinations as new antimicrobial drugs by effective means.

8.
Pharmaceutics ; 15(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111682

RESUMO

By following simple protein engineering steps, recombinant proteins with promising applications in the field of drug delivery can be assembled in the form of functional materials of increasing complexity, either as nanoparticles or nanoparticle-leaking secretory microparticles. Among the suitable strategies for protein assembly, the use of histidine-rich tags in combination with coordinating divalent cations allows the construction of both categories of material out of pure polypeptide samples. Such molecular crosslinking results in chemically homogeneous protein particles with a defined composition, a fact that offers soft regulatory routes towards clinical applications for nanostructured protein-only drugs or for protein-based drug vehicles. Successes in the fabrication and final performance of these materials are expected, irrespective of the protein source. However, this fact has not yet been fully explored and confirmed. By taking the antigenic RBD domain of the SARS-CoV-2 spike glycoprotein as a model building block, we investigated the production of nanoparticles and secretory microparticles out of the versions of recombinant RBD produced by bacteria (Escherichia coli), insect cells (Sf9), and two different mammalian cell lines (namely HEK 293F and Expi293F). Although both functional nanoparticles and secretory microparticles were effectively generated in all cases, the technological and biological idiosyncrasy of each type of cell factory impacted the biophysical properties of the products. Therefore, the selection of a protein biofabrication platform is not irrelevant but instead is a significant factor in the upstream pipeline of protein assembly into supramolecular, complex, and functional materials.

9.
Pharmaceutics ; 14(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36559138

RESUMO

Protein-based materials intended as nanostructured drugs or drug carriers are progressively gaining interest in nanomedicine, since their structure, assembly and cellular interactivity can be tailored by recruiting functional domains. The main bottleneck in the development of deliverable protein materials is the lysosomal degradation that follows endosome maturation. This is especially disappointing in the case of receptor-targeted protein constructs, which, while being highly promising and in demand in precision medicines, enter cells via endosomal/lysosomal routes. In the search for suitable protein agents that might promote endosome escape, we have explored the translocation domain (TD) of the diphtheria toxin as a functional domain in CXCR4-targeted oligomeric nanoparticles designed for cancer therapies. The pharmacological interest of such protein materials could be largely enhanced by improving their proteolytic stability. The incorporation of TD into the building blocks enhances the amount of the material detected inside of exposed CXCR4+ cells up to around 25-fold, in absence of cytotoxicity. This rise cannot be accounted for by endosomal escape, since the lysosomal degradation of the new construct decreases only moderately. On the other hand, a significant loss in the specificity of the CXCR4-dependent cellular penetration indicates the unexpected role of the toxin segment as a cell-penetrating peptide in a dose-dependent and receptor-independent fashion. These data reveal that the diphtheria toxin TD displayed on receptor-targeted oligomeric nanoparticles partially abolishes the exquisite receptor specificity of the parental material and it induces nonspecific internalization in mammalian cells.

11.
Rev. chil. nutr ; 49(3)jun. 2022.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1388619

RESUMO

RESUMEN La educación alimentaria nutricional es la combinación de estrategias educativas, acompañadas de apoyos ambientales, diseñadas para facilitar la adopción voluntaria de elecciones alimentarias que conducen a un estado óptimo de salud y bienestar. La educación alimentaria nutricional tiene tres componentes: 1) motivación, 2) acción y 3) ambiente. Para elegir la técnica de educación adecuada para cada persona, se deben considerar las características psicoemocionales individuales, especialmente las motivaciones para el cambio y el tipo de personalidad, ya que ambos han mostrado ser buenos predictores de la conducta alimentaria. Dentro de los recursos educativos posibles de utilizar para realizar la educación en alimentación nutricional se encuentran indicaciones verbales, material escrito, uso de internet, dispositivos portátiles, aplicaciones de teléfonos inteligentes, e incluso la clase de cocina. La evidencia demuestra que la educación alimentaria nutricional impacta favorablemente la adherencia a las intervenciones nutricionales, lo cual a la vez se ve reflejado en efectos positivos en la salud.


ABSTRACT Food and nutrition education is the combination of educational strategies, accompanied by environmental supports designed to facilitate voluntary adoption of food choices conducive of health and well-being. It has a motivational phase, an action phase, and an environmental component. To choose the right educational technique for each patient, their individual psychoemotional characteristics must be considered; especially what their motivations for change are, as well as their personality type, because both are good predictors of food behavior. Among the resources that can be used to perform nutrition education are verbal indications, written material, the internet, mobile devices, smartphone applications, and even the kitchen as a place for education. Evidence shows that nutrition education has a favorable impact on diet adherence in different conditions that have an important nutritional component, such as celiac disease, inflammatory bowel disease, diabetes and obesity, which at the same time produces positive health outcomes.

12.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563346

RESUMO

Under the need for new functional and biocompatible materials for biomedical applications, protein engineering allows the design of assemblable polypeptides, which, as convenient building blocks of supramolecular complexes, can be produced in recombinant cells by simple and scalable methodologies. However, the stability of such materials is often overlooked or disregarded, becoming a potential bottleneck in the development and viability of novel products. In this context, we propose a design strategy based on in silico tools to detect instability areas in protein materials and to facilitate the decision making in the rational mutagenesis aimed to increase their stability and solubility. As a case study, we demonstrate the potential of this methodology to improve the stability of a humanized scaffold protein (a domain of the human nidogen), with the ability to oligomerize into regular nanoparticles usable to deliver payload drugs to tumor cells. Several nidogen mutants suggested by the method showed important and measurable improvements in their structural stability while retaining the functionalities and production yields of the original protein. Then, we propose the procedure developed here as a cost-effective routine tool in the design and optimization of multimeric protein materials prior to any experimental testing.


Assuntos
Nanopartículas , Proteínas , Materiais Biocompatíveis , Tomada de Decisões , Humanos , Nanopartículas/química , Peptídeos , Engenharia de Proteínas/métodos , Proteínas/genética
13.
Pharmaceutics ; 14(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335976

RESUMO

The coordination between histidine-rich peptides and divalent cations supports the formation of nano- and micro-scale protein biomaterials, including toxic and non-toxic functional amyloids, which can be adapted as drug delivery systems. Among them, inclusion bodies (IBs) formed in recombinant bacteria have shown promise as protein depots for time-sustained protein release. We have demonstrated here that the hexahistidine (H6) tag, fused to recombinant proteins, impacts both on the formation of bacterial IBs and on the conformation of the IB-forming protein, which shows a higher content of cross-beta intermolecular interactions in H6-tagged versions. Additionally, the addition of EDTA during the spontaneous disintegration of isolated IBs largely affects the protein leakage rate, again protein release being stimulated in His-tagged materials. This event depends on the number of His residues but irrespective of the location of the tag in the protein, as it occurs in either C-tagged or N-tagged proteins. The architectonic role of H6 in the formation of bacterial IBs, probably through coordination with divalent cations, offers an easy approach to manipulate protein leakage and to tailor the applicability of this material as a secretory amyloidal depot in different biomedical interfaces. In addition, the findings also offer a model to finely investigate, in a simple set-up, the mechanics of protein release from functional secretory amyloids.

14.
Methods Mol Biol ; 2406: 469-477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089575

RESUMO

Despite substantial development of production and purification protocols for heterologous recombinant proteins, some proteins are difficult to produce or, when produced, are accumulated in inclusion bodies (IBs). Nondenaturing protocols can be used to recover the entrapped protein from these protein aggregates. In this chapter, we provide a detailed procedure to analyze the physicochemical properties of one of those proteins produced in prokaryotic expression systems. Serum amyloid A3 (SAA3) was recovered from inclusion bodies (IBs) and its secondary structure associated to thermal stability and size was determined by circular dichroism (CD) and dynamic light scattering (DLS), respectively. These techniques were also applied to evaluate the SAA3 interaction with model membranes. These results show the importance of the structural analysis of proteins released from inclusion bodies under nondenaturing procedures, although similar approaches can be extended to any type of recombinant protein preparation.


Assuntos
Escherichia coli , Corpos de Inclusão , Dicroísmo Circular , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Controle de Qualidade , Proteínas Recombinantes/metabolismo
15.
Biophys Chem ; 281: 106739, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923392

RESUMO

ß-Galactosidase is an important biotechnological enzyme used in the dairy industry, pharmacology and in molecular biology. In our laboratory we have overexpressed a recombinant ß-galactosidase in Escherichia coli (E. coli). This enzyme differs from its native version (ß-GalWT) in that 6 histidine residues have been added to the carboxyl terminus in the primary sequence (ß-GalHis), which allows its purification by immobilized metal affinity chromatography (IMAC). In this work we compared the functionality and structure of both proteins and evaluated their catalytic behavior on the kinetics of lactose hydrolysis. We observed a significant reduction in the enzymatic activity of ß-GalHis with respect to ß-GalWT. Although, both enzymes showed a similar catalytic profile as a function of temperature, ß-GalHis presented a higher resistance to the thermal inactivation compared to ß-GalWT. At room temperature, ß-GalHis showed a fluorescence spectrum compatible with a partially unstructured protein, however, it exhibited a lower tendency to the thermal-induced unfolding with respect to ß-GalWT. The distinctively supramolecular arranges of the proteins would explain the effect of the presence of His-tag on the enzymatic activity and thermal stability.


Assuntos
Escherichia coli , Lactose , Estabilidade Enzimática , Escherichia coli/metabolismo , Cinética , Lactose/metabolismo , beta-Galactosidase/química , beta-Galactosidase/metabolismo
16.
ACS Sustain Chem Eng ; 9(36): 12341-12354, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34603855

RESUMO

We have developed a simple, robust, and fully transversal approach for the a-la-carte fabrication of functional multimeric nanoparticles with potential biomedical applications, validated here by a set of diverse and unrelated polypeptides. The proposed concept is based on the controlled coordination between Zn2+ ions and His residues in His-tagged proteins. This approach results in a spontaneous and reproducible protein assembly as nanoscale oligomers that keep the original functionalities of the protein building blocks. The assembly of these materials is not linked to particular polypeptide features, and it is based on an environmentally friendly and sustainable approach. The resulting nanoparticles, with dimensions ranging between 10 and 15 nm, are regular in size, are architecturally stable, are fully functional, and serve as intermediates in a more complex assembly process, resulting in the formation of microscale protein materials. Since most of the recombinant proteins produced by biochemical and biotechnological industries and intended for biomedical research are His-tagged, the green biofabrication procedure proposed here can be straightforwardly applied to a huge spectrum of protein species for their conversion into their respective nanostructured formats.

17.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809594

RESUMO

A detailed workflow to analyze the physicochemical characteristics of mammalian matrix metalloproteinase (MMP-9) protein species obtained from protein aggregates (inclusion bodies-IBs) was followed. MMP-9 was recombinantly produced in the prokaryotic microbial cell factories Clearcoli (an engineered form of Escherichia coli) and Lactococcus lactis, mainly forming part of IBs and partially recovered under non-denaturing conditions. After the purification by affinity chromatography of solubilized MMP-9, four protein peaks were obtained. However, so far, the different conformational protein species forming part of IBs have not been isolated and characterized. Therefore, with the aim to link the physicochemical characteristics of the isolated peaks with their biological activity, we set up a methodological approach that included dynamic light scattering (DLS), circular dichroism (CD), and spectrofluorometric analysis confirming the separation of subpopulations of conformers with specific characteristics. In protein purification procedures, the detailed analysis of the individual physicochemical properties and the biological activity of protein peaks separated by chromatographic techniques is a reliable source of information to select the best-fitted protein populations.


Assuntos
Corpos de Inclusão/metabolismo , Metaloproteinase 9 da Matriz/química , Proteínas Recombinantes/química , Animais , Bovinos , Cromatografia de Afinidade , Dicroísmo Circular , Difusão Dinâmica da Luz , Escherichia coli/metabolismo , Lactobacillus/metabolismo , Metaloproteinase 9 da Matriz/isolamento & purificação , Conformação Proteica , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Espectrometria de Fluorescência , Temperatura , Triptofano/química
18.
Acta Biomater ; 119: 312-322, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189955

RESUMO

The possibility to conjugate tumor-targeted cytotoxic nanoparticles and conventional antitumoral drugs in single pharmacological entities would open a wide spectrum of opportunities in nanomedical oncology. This principle has been explored here by using CXCR4-targeted self-assembling protein nanoparticles based on two potent microbial toxins, the exotoxin A from Pseudomonas aeruginosa and the diphtheria toxin from Corynebacterium diphtheriae, to which oligo-floxuridine and monomethyl auristatin E respectively have been chemically coupled. The resulting multifunctional hybrid nanoconjugates, with a hydrodynamic size of around 50 nm, are stable and internalize target cells with a biological impact. Although the chemical conjugation minimizes the cytotoxic activity of the protein partner in the complexes, the concept of drug combination proposed here is fully feasible and highly promising when considering multiple drug treatments aimed to higher effectiveness or when facing the therapy of cancers with acquired resistance to classical drugs.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Humanos , Nanoconjugados , Neoplasias/tratamento farmacológico , Proteínas , Pseudomonas aeruginosa
19.
Pharmaceutics ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348529

RESUMO

Oligomerization of antimicrobial peptides into nanosized supramolecular complexes produced in biological systems (inclusion bodies and self-assembling nanoparticles) seems an appealing alternative to conventional antibiotics. In this work, the antimicrobial peptide, GWH1, was N-terminally fused to two different scaffold proteins, namely, GFP and IFN-γ for its bacterial production in the form of such recombinant protein complexes. Protein self-assembling as regular soluble protein nanoparticles was achieved in the case of GWH1-GFP, while oligomerization into bacterial inclusion bodies was reached in both constructions. Among all these types of therapeutic proteins, protein nanoparticles of GWH1-GFP showed the highest bactericidal effect in an in vitro assay against Escherichia coli, whereas non-oligomerized GWH1-GFP and GWH1-IFN-γ only displayed a moderate bactericidal activity. These results indicate that the biological activity of GWH1 is specifically enhanced in the form of regular multi-display configurations. Those in vitro observations were fully validated against a bacterial infection using a mouse mastitis model, in which the GWH1-GFP soluble nanoparticles were able to effectively reduce bacterial loads.

20.
Pharmaceutics ; 12(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105866

RESUMO

Fluorescent dye labeling is a common strategy to analyze the fate of administered nanoparticles in living organisms. However, to which extent the labeling processes can alter the original nanoparticle biodistribution has been so far neglected. In this work, two widely used fluorescent dye molecules, namely, ATTO488 (ATTO) and Sulfo-Cy5 (S-Cy5), have been covalently attached to a well-characterized CXCR4-targeted self-assembling protein nanoparticle (known as T22-GFP-H6). The biodistribution of labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles has been then compared to that of the non-labeled nanoparticle in different CXCR4+ tumor mouse models. We observed that while parental T22-GFP-H6 nanoparticles accumulated mostly and specifically in CXCR4+ tumor cells, labeled T22-GFP-H6-ATTO and T22-GFP-H6-S-Cy5 nanoparticles showed a dramatic change in the biodistribution pattern, accumulating in non-target organs such as liver or kidney while reducing tumor targeting capacity. Therefore, the use of such labeling molecules should be avoided in target and non-target tissue uptake studies during the design and development of targeted nanoscale drug delivery systems, since their effect over the fate of the nanomaterial can lead to considerable miss-interpretations of the actual nanoparticle biodistribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...